Type a new keyword(s) and press Enter to search

Flourine and our galaxy

             Fluorine (Latin fluo, “flow”), symbol F, chemically reactive, poisonous gaseous element. Fluorine is one of the halogens and is in group 17 of the periodic table. The atomic number of fluorine is 9. The element was first isolated in 1886 by the French chemist Henri Moissan. He won the 1906 Nobel Prize for Chemistry for his impressive work. .
             It is a pale yellow, corrosive gas, which reacts with practically all organic and inorganic substances. Finely divided metals, glass, ceramics, carbon, and even water burn in fluorine with a bright flame. Until World War 2, there was no commercial production of elemental fluorine. Atom bomb projects and nuclear energy applications made it necessary to produce large quantities of fluorine since isotopes of uranium can be separated through the gas diffusion of UF6. Reasonably safe handling techniques for fluorine available and one can transport liquid fluorine by the ton. Compounds of fluorine with noble gases such as xenon, radon, and krypton are known. Elemental fluorine and the fluoride ion (in quantity) are highly toxic. The main mechanisms for producing fluorine in stars are: (1) neutrino-induced spallation of a proton from Neon-20, referred to as the neutrino process; (2) synthesis from helium capture by Nitrogen-14 during asymtoptic giant branch (AGB) thermal pulses; and (3) production of Fluorine-19 in the cores of massive Wolf-Rayet (W-R) stars.
             It would never be necessary to make fluorine gas in most laboratories. Fluorine is available commercially in cylinders but is very difficult to handle. Fluorine may be recovered with difficulty as a highly reactive and corrosive pale yellow gas by electrolysis of hot molten mixtures (1:2) of potassium fluoride and hydrogen fluoride. The electrolyte is corrosive, so is the product. Grease must be avoided because of the fire hazard. It is difficult to store as it reacts with most materials but steel and Monel metal containers may be used as the metal surfaces deactivate through the formation of unreactive surface fluorides.